Stability of Bulk-Heterojunction Blends for Solar Cell Applications

نویسندگان

  • CAMILLA LINDQVIST
  • Patrik Henriksson
  • Camilla Lindqvist
  • Ergang Wang
  • Zandra George
  • Renee Kroon
  • Christian Müller
  • Teketel Yohannes
  • Olle Inganäs
  • Mats R. Andersson
چکیده

Polymer solar cells are a promising alternative to more traditional silicon solar cells. This is mainly due to the good solubility of organic semiconductors, which makes it possible to produce large-scale and mechanically flexible devices with roll-to-roll processes. To be able to fully utilise this promising technique the stability of the materials, used in these devices, must be guaranteed. The focus of this thesis is the stability of the active layers of polymer solar cells. Both, bleaching due to photo-oxidative degradation and thermal stability of the nanostructure have been studied. The presented work is mostly based on blends of a thiophene-quinoxaline based polymer (TQ1) and fullerene derivatives (PCBM). The first part of the thesis deals with the photo-oxidative stability of TQ1 and a pyrido pyrazine based polymer (TQN). To make those polymers more black they were co-polymerised with thiophene-hexylthiophene. The stability of TQN is shown to be un-effected by this incorporation whereas the stability of TQ1 decreased. Moreover, the degradation rate of TQ1 seems to be independent of both molecular weight and film thickness. The stability of the nanostructure has been studied with various microscopy and spectroscopy methods. Below the glass transition temperature of the TQ1:PC61BM blend only local rearrangement of polymer chains is possible. This mild annealing is found to increase the device efficiency. In contrast, annealing at higher temperatures above the glass transition temperature led to a coarser nanostructure and formation of PCBM crystals, which was detrimental for the performance of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study

By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...

متن کامل

High Efficiencies in Nanoscale Poly(3-‎Hexylthiophene)/Fullerene Solar Cells

   A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...

متن کامل

Stability of graphene-based heterojunction solar cells

Bulk-heterojunction (BHJ) solar cells based on organic small molecules and polymers are the focus of increasing attention by science and commerce. In organic photovoltaic devices, a conjugated polymer layer is used as the donor, while a fullerene-based derivative is used as the acceptor. Poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is one of the most common interfacial ma...

متن کامل

Polymer-fullerene bulk heterojunctions : morphology and its implications on the performance and stability of photovoltaic devices

Over the last decade, great improvements have been made within the field of organic BHJ solar cells. It has become clear that the active layer morphology plays a key role in achieving competitive devices. Within this work, the active layer morphology of several polymer:PCBM systems is correlated with the performance and stability of the corresponding solar cells. The morphology of polymer:fulle...

متن کامل

The Need for Bulk Heterojunctions

Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy processing from solution on a variety of substrates with good performance. Efficiencies of up to 5% in solar light have been achieved, and lifetimes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014